Midinfrared femtosecond laser pulse filamentation in hollow waveguides: a comparison of simulation methods.

نویسندگان

  • J Andreasen
  • M Kolesik
چکیده

This work compares computational methods for laser pulse propagation in hollow waveguides filled with rare gases at high pressures, with applications in extreme nonlinear optics in the midinfrared wavelength region. As the wavelength of light λ=2π/k increases with respect to the transverse size R of a leaky waveguide, the loss of light out of the waveguide upon propagation, in general, increases. The now standard numerical approach for studying such structures is based on expansion of the propagating field into approximate leaky waveguide modes. We compare this approach to an improved method that resolves the electric field in real space and correctly captures the energy loss through the waveguide wall. The comparison reveals that the expansion-based approach overestimates losses that occur in nonlinearly reshaped pulsed waveforms. For a modest increase in computational effort, the alternate method offers a physically more accurate model to describe phenomena (e.g., extreme pulse-selfcompression) in waveguides with smaller values of kR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the re...

متن کامل

Compression of ultrashort laser pulses in planar hollow waveguides: a stability analysis.

We investigate compression of ultrashort laser pulses by nonlinear propagation in gas-filled planar hollow waveguides, using (3+1)- dimensional numerical simulations. In this geometry, the laser beam is guided with a fixed size in one transverse dimension, generating significant spectral broadening, while it propagates freely in the other, allowing for energy up-scalability. In this respect the...

متن کامل

The study of propagation of a femtosecond laser pulse in the breast tissue

In this paper, the evaluation of time profile of a femtosecond pulse laser propagated through biological tissues is studied. The majority of the biological tissues with a high scattering anisotropy must be considered as turbid media, that their optical responses are complicated. To study the propagation of ultra-short pulse in turbid media, the diffuse equation is used. In this study, the analy...

متن کامل

Nonlinear Propagation of a Femtosecond Laser Pulse in Gases: Properties and Applications

When an intense femtosecond laser pulse propagates in a gas, it undergoes fila-mentation, a spectacular process where the pulse spatial, spectral and temporalcharacteristics change considerably. A thin short-lived plasma column is formed inthe wake of the propagating pulse. My PhD work has been dedicated to the furtherunderstanding of the filamentation process. In a first pa...

متن کامل

Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas

We study numerically and analytically the role of the combined effect of self-focusing, geometrical focusing, and the plasma defocusing in the formation of the fluorescence signal during the filamentation of a Ti:sapphire laser pulse in nitrogen molecular gas. Results of numerical simulations are used to estimate the number of excited ions in the focal volume, which is proportional to the fluor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 87 5  شماره 

صفحات  -

تاریخ انتشار 2013